

PAY by square specifications

specifications for PAY by square standard

by square is a trademark of ADELANTE, s.r.o.
www.bysquare.com

info@bysquare.co

http://www.bysquare.com/
mailto:info@bysquare.com

Disclaimer .. 4

Foreword .. 4

Document overview .. 5

Document version and history .. 5

by square ­ PAY specifications ­ 1.2.0 .. 5

Using this document ... 6

Artifacts of the by square standard ... 6

Versioning .. 7

Terminology ... 8

Introduction .. 9

Purpose and scope .. 9

1. Requirements and conformance ... 9

2. Overall description .. 9

3. Description ... 10

3.1. PAY by square type ... 10

3.2. PAY by square logo ... 10

3.3. PAY by square versions .. 11

3.4. Document types ... 11

3.5. by square header ... 11

3.6. Supplying an XML document with client data ... 12

3.7. Preprocessing of client data ... 12

Dates, numbers, codes ... 12

Multiple options ... 13

3.8. Generating field sequence ... 13

3.9. Sequence length .. 14

3.9.1. Data sequence length for encoding into QR codes ... 14

3.9.2. Data sequence length for other purposes ... 14

3.10. Appending CRC32 checksum .. 14

3.11. LZMA Compression ... 15

3.12. Appending header information ... 15

3.13. Alphanumeric conversion using Base32hex .. 15

3.14. Generating by square Code ... 17

3.15. Summary – encoding process overview... 18

3.16. Decoding client data from QR Code 2005 symbol ... 18

4. PAY by square data model ... 19

Appendix A ­ classifiers. ... 20

Appendix B ­ encoding recommendations. ... 21

Implementation philosophy ... 21

List of encoding recommendations ... 21

1. General recommendations ... 21

1.1. On using by square software libraries .. 21

1.2. Size of the QR code module .. 22

1.3. PAY by square logo ... 22

2. Recommendations for generating PAY by square for invoice ... 22

2.1. Encoding payment options ... 22

2.2. Encoding bank accounts .. 22

2.3. Encoding payment note ... 23

Examples of the payment note: ... 23

2.4. Other payment order considerations .. 23

2.5. Other standing order considerations .. 24

2.6. Other direct debit considerations.. 24

Appendix C ­ decoding recommendations. ... 25

Implementation philosophy ... 25

List of decoding recommendations ... 25

1. Recommendation for mobile banking (smart banking) applications................................. 25

2. Recommendations for decoding PAY by square ... 26

2.1. Recommendations for filling in payment order from PAY by square Code 26

2.2. Recommendations for filling in standing order from PAY by square Code 26

2.3. Recommendations for filling in direct debit order from PAY by square Code 27

Appendix D ­ data model overview ... 28

Appendix E ­ extended beneficiary fields .. 29

References ... 30

Disclaimer

This document represents the PAY by square specifications created by ADELANTE,

s.r.o. for the benefit of Slovenská banková asociácia (SBA) to be the standard for encoding and

decoding of payment information into and from QR codes for the members of the SBA. The

contents herein are intended for free public circulation, however, they are not to be changed in

any manner, in whole or in part without the prior express written permission of the SBA.

Unauthorised interference into the content of this document and its subsequent reproduction,

printing, publishing, posting, displaying, incorporation, storing in or scanning into a retrieval

system or database, transmission, broadcasting, bartering or selling is strictly prohibited and is

an infringement of copyright laws.

Foreword

ADELANTE, s.r.o. is a Slovak Republic based corporation developing, publishing, promoting

and aiding implementation of the PAY by square standard for the benefit of the SBA. This

document represents the PAY by square specifications. It is intended to serve as the basis for

evaluation and implementation of the PAY by square standard by developers and the

professional community.

Document overview

Document version and history

Table 1 – document version and history:

Version Release Date Note

0 2013­02­22 created this document from original by square specifications

1 2015­06­24 added fields for beneficiary name and address

2 2025-10-09 beneficiary name is now a required field

by square ­ PAY specifications ­ 1.2.0

Table 2 ­ List of files which are part of PAY by square specifications 1.2.0:

File name Note

by square ­ PAY specifications ­ 1.2.0.pdf this document

bysquare­schema­pay­1.2.0.zip XSD document of the by square data model

bysquare­schema­doc­pay­1.2.0.zip PAY by square schema HTML documentation

by square ­ PAY logo manual ­ 1.0.0.pdf PAY by square logo manual

Table 3 ­ PAY by square schema version specified in this document:

by square schema Version

by square schema ­ pay 1.2.x

Table 4 ­ by square type versions specified in this document:

by square type Version

PAY by square 0

Using this document

Artifacts of the by square standard

To define by square standard and aid its implementation, ADELANTE, s.r.o. specifies and

releases number of artifacts. Here is the list of these artifacts:

● by square specifications

● by square schema

● by square software libraries

● by square implementation manual

● by square test utilities

● by square encoding/decoding applications

by square specifications comprises of several documents (including this document) and

provides all information on the by square standard required for successful implementation of

the by square standard.

by square schema defines the data model of the by square standard. It is represented as an

XSD document, which specifies data structure of all by square types.

by square software libraries are software libraries developed by ADELANTE, s.r.o., to aid

implementation of the by square standard. by square software libraries significantly decrease

costs of implementing by square and help achieve consistent by square implementations across

businesses and banks.

by square implementation manual provides necessary documentation to by square software

libraries.

by square test utilities provide means for efficient testing of your implementation. by square

test utilities significantly decrease costs of implementing by square and help achieve consistent

by square implementations across businesses and banks.

by square encoding/decoding applications help you try, test and evaluate capabilities and

functions of the by square standard.

Versioning

by square type versioning is a sequence based versioning using one sequence, denoting

version of the by square type. This sequence is increased when data model of the by square

type, as defined by the by square schema, is modified. Whenever by square type version is

increased, new versions of by square standard schema, by square software libraries and

documentation are released.

by square schema versioning is a sequence based versioning using three separate

sequences with individual meaning:

major.minor.bug(revision)

Major sequence is increased when new by square type is added, Minor sequence is increased

when data model of any of the existing by square types is modified and Bug (revision) sequence

is increased when bug or error is fixed in current release of the schema.

by square software libraries versioning is a sequence based versioning using three separate

sequences with individual meaning:

major.minor.bug(revision)­optional(feature)

First two sequences ­ major and minor refer to the versioning of the by square schema. This

means that the by square schema and related software libraries have the same major.minor

version number. Bug (revision) sequence is increased when bug is fixed or revision is done to

the current release of the software libraries. Optional(feature) is a string indicating a new feature

that does not necessarily mean a new version. If not using this feature, upgrade is not

necessary.

by square specifications versioning is a sequence based versioning using three separate

sequences with individual meaning:

major.minor.bug(revision)

First two sequences ­ major and minor refer to the versioning of the by square schema. This

means that the by square schema and corresponding specifications have the same major.minor

version number. Bug (revision) sequence is increased when error is corrected or revision is

done to the current specifications.

Example: Current by square type PAY by square is in version 0.

Data structure of these by square types is defined in the current version 1.1.0 of the PAY by

square schema. PAY by square specifications 1.1.x and by square software libraries

1.1.x are all compatible with PAY by square schema 1.1.0. This being said we always

recommend use of the latest specifications and software libraries.

Terminology

ASCII ­ character encoding scheme based on english alphabet

Base32hex ­ binary­to­ASCII encoding schema

BSQR ­ by square QR code

by square code logo ­ identifies QR code 2005 symbol encoded according to by square

Standard

by square type logo ­ identifies compatibility with by square Standard

by square type ­ subset of the by square standard, intended for specific functional domain.

client data ­ any data serving as input for encoding

client attribute ­ a particular entity in the client data

document type ­ well defined and structured collection of client data required for a specific act

or task within given functional domain. PAY by square has exactly one document type and that

is PAY.

QR code 2005 ­ international standard defined in [1]

QR code 2005 symbol ­ matrix consisting square light and dark modules arranged in an overall

square pattern

CRC32 checksum ­ error detection mechanism for data

LZMA ­ an algorithm for data compression

Introduction

PAY by square standard is a standard optimized for electronic encoding of payment orders into

a QR code and decoding payment orders from a QR code. Nevertheless, the square format

can be used for other purposes such as NFC.

Throughout this document we are referring to QR codes generated according to by square

standard as by square QR codes or BSQR codes for short. We will refer to payment data as

client data.

Purpose and scope

By square is a standard defining electronic data format and process of encoding and decoding

client data into and back from a QR Code 2005 symbol. The purpose of this specifications

document is to explain the underlying electronic format and process. This document specifies

a client data attribute list, attribute metadata, W3C XML schema for data validation, CRC32

algorithm for checksum generation, LZMA algorithm for data compression, Base32hex

algorithm for binary­to­ASCII data conversion and QR Code 2005 input parameter settings. This

document also discusses error detection and QR Code 2005 symbol size considerations. The

overall aim is to provide a detailed description of each step of the encoding and decoding

process.|

1. Requirements and conformance

The specification makes use of XML and XSD schema as recommended by W3C consortium

[2,4]. A Lempel–Ziv–Markov chain compression algorithm ­ LZMA is used for compression of

the client data. CRC32 a cyclic redundancy check, an error detecting algorithm and code is

used to ensure data integrity of client data. A Base32 algorithm [3] is used for alphanumeric

encoding. The graphical result of the by square system is produced by QR Code 2005

international standard [1]. The by square documentation is compliant with all mentioned

standards.

2. Overall description

The next section of the document (see section 3) describes the encoding and decoding steps

of the by square standard (fig. 1). The client data for encoding is presented as an XML

document. The structure of the XML must conform an XML schema which is part of the overall

specification. The data is read, processed (as described in 3) and ordered into a data sequence.

Afterwards a CRC32 checksum is computed, appended at the head of the data sequence and

both are compressed by the LZMA algorithm. A header with metadata is appended to the

compressed data. The resulting data sequence is translated to an ASCII representation using

a specific Base32hex scheme (described in 3.13). The ASCII representation serves as an input

for the QR Code 2005 encoder which produces the symbol. The decoding process described

in section 3.16 consists of the same steps as the encoding process. The individual decoding

steps represent an inverse operation to their encoding counterpart.

3. Description

This section describes the PAY by square Standard and the process of encoding and decoding

client data to and from a QR Code 2005 symbol as described in section 2 Overall Description

and on fig. 1.

3.1. PAY by square type

PAY by square is part of the by square standard developed by ADELANTE, s.r.o. for the benefit

of Slovenská banková asociácia (SBA). The by square standard comprises of several by square

types. Each by square type is designated for a specific functional domain. This document covers

only PAY by square type.

Table 5 ­ Full overview of by PAY by square type and documents

by square type

by square type

bit value

version

version

bit value

document

type

document type

bit value

PAY by square 0000 0 0000 pay 0000

3.2. PAY by square logo

by square code logo purpose is to clearly identify by square code belonging under given by

square type.

It is mandatory that by square code logo always accompanies BSQR code either in color or

black and white graphical representation. All permitted variations of the by square code logo

are in the by square ­ logo manual which is a part of these specifications.

Table 6 ­ overview of the basic by square code logos and type logos

by square Type

by square code logo

by square code logo

(optional electronic use)

PAY by square

3.3. PAY by square versions

Purpose of the version is to differentiate the latest definition of the PAY by square type from

older definitions. This is important to ensure correct interpretation of the by square codes and

to ensure backward compatibility.

PAY by square type version is clearly indicated:

● in this specifications document in section document overview,

● in the by square schema XSD document, for each by square type (root element),

● in the header of each by square code (as described in the section by square header).

Highest supported PAY by square type version should be also clearly indicated in all

applications conforming with by square standard.

3.4. Document types

by square type can further contain several document types. Document types are well defined

and structured collections of client data required for a specific act or task within a given

functional domain. PAY by square type contains only one document type.

3.5. by square header

by square type, version and document type constitute the header of each message within the

by square standard. Message header ensures that the recipient of the BSQR code has instant

information on what type of information it is receiving and whether he is capable of decoding

the information.

Table 7 – by square Header

Attribute

Number

of bits

Possible

Values

Note

BySquareType 4 0­15 by square type

Version 4 0­15 version of the by square type

DocumentType 4 0­15 document type within given by square type

Reserved 4 0­15 bits reserved for future needs

Figure 2 – by square header overview

3.6. Supplying an XML document with client data

For the purpose of this document, input client data is represented as an XML 1.0 document

according to the W3C specification standard [2]. The XML standard allows structuring of data

at the necessary level in order to validate and verify it for completeness. The client XML

document must be in conformance with a XML schema which is part of the specification. The

by square schema describes a complete list of possible attributes, fields, values and classifiers

for each document type under each by square type.

For the purpose of particular implementation, input client data can have any representation, but

need to meet criteria set forth in the XML schema, such as data format, length, order, etc..

3.7. Preprocessing of client data

Dates, numbers, codes

Date fields are provided according to XML schema. After reading field values from client XML

document all date field values (see section 4 for more on data model) are converted from (ISO

8601) YYYY­MM­DD to YYYYMMDD format. The result of the conversion is considered as a

new value for the given date field.

Numbers, currency codes, country codes, BIC and IBAN need to be provided in specified format

according to table 8.

Table 8 ­ Data formatting rules

Data Type Format Description Example

date

YYYYMMDD

ISO 8601

'2012­03­14' for 14th of March

2012

decimal

number

#.########

dot is used as decimal mark

3.14159265

currency

code

XXX

3 letter representation

ISO 4217

EUR

country

code

XXX

3 letter representation ISO

3166 (alpha­3 code)

SVK

BIC

ISO 9362

8 or 11 characters long

bank identifier code

TATRSKBX

IBAN

ISO 13616

up to 34 characters long

international bank account

number

SK5111000000002922782343

Multiple options

If a field has multiple options assigned, the classifiers of these options are summed and the

resulting integer is considered as the new value of the field. For example we have a month field

with 1 (January), 64 (July) and 512 (October):

Input: 1, 64, 512

Output: 577

List and detailed description of such attributes is given in Appendix A.

3.8. Generating field sequence

After data is read from the XML document and preprocessed as described in the previous

section the attribute values are ordered into a sequence. Following rules apply:

● The order in which the field values are put into the sequence is defined by the order

attribute in the XSD schema. If any optional field value defined in the schema is missing the

value is treated as if it had 0 length. Between each value pair a ASCII horizontal tab character

is inserted. In order to ensure the sequence format is correct, any horizontal tab characters

found in field values are replaced with a space character. Values of length 0 are also considered

and it may result in two or more consecutive tab characters. The horizontal tab character

represents a separator between any two field values and the correct field ordering can be

reconstructed after decoding takes place.

● If a field has schema attribute maxOccurs="unbounded", this means that such field can

repeat in the sequence. Before adding the first instance of such repeating field into the

sequence, an integer number representing the number of occurrences is inserted into sequence

and delimited with horizontal tab character. This is important for proper decoding of the

sequence, as this integer number informs the decoder on how many occurrences of given

attribute it should expect. Example is: BankAccount element

● If a field is a complex type and has schema attribute minOccurs=“0“, this means that

the whole complex element might not appear in the sequence. Before adding attribute into the

sequence, an integer number of 0 or 1, representing number of occurrences, is inserted and

delimited with horizontal tab character. 0 represents no occurrences of a given complex

element, element children are ignored in such cases and the whole process continues with the

next attribute in the schema. Example is: DirectDebitExt complex element

From this point further it is convenient to perceive the client data not as a character sequence

but as a UTF­8 bit sequence and we will refer to is as such further on.

3.9. Sequence length

3.9.1. Data sequence length for encoding into QR codes

Due to the data size limit of a QR code 2005 symbol, the string sequence consisting of

preprocessed client data has to be limited. Setting the sequence limit is subject to various

factors. Too large limit will result in poorly readable QR code symbols when printed to a small

physical size. Too small limit will result in too few data contained in the QR code symbol. After

careful considerations of the physical size and the average size of data, the sequence limit was

set to 550 UTF­8 characters including the delimiter (horizontal tab character). This length limit

is sufficient enough to contain data for up to 5 payment orders with multiple bank accounts.

Any combination of payment data, whether it is multiple payments, various payment types or

multiple bank accounts can be combined into a single code, as long as the resulting UTF­8 bit

sequence is shorter than 550 characters. If sequence should exceed the limit of 550 characters,

data should be split into multiple codes or some data (such as alternative bank accounts) should

be omitted.

3.9.2. Data sequence length for other purposes

For other use than encoding into QR codes, the sequence length limit can be disabled and

single by square code can contain theoretically unlimited number of payments and bank

accounts. However the data is limited to 65535 compressed bytes due to the implementation

of compression algorithm discussed in 3.11.

3.10. Appending CRC32 checksum

Before compression takes place a CRC32 checksum is computed from the bit sequence and

the checksum is appended to the beginning of the bit sequence, as the first 32 bits. The

following polynomial is used in the CRC32 algorithm:

When decoding by square codes, this stored checksum is compared with the calculated

checksum of the decompressed data to ensure data integrity.

3.11. LZMA Compression

The compression algorithm used is LZMA. The header of compressed data is 2 bytes long and

contains only one 16­bit unsigned integer (word, little endian), which is the size of the

decompressed data. Therefore the maximum size of compressed data is limited to 65535. The

parameters for compression are:

● LC = 3

● LP = 0

● PB = 2

● DICTIONARY_SIZE = 128 kilobytes (2 ^ 17)

After decompression, the first 4 bytes of the decompressed data is CRC32 checksum (DWORD,

little­endian) of the decompressed data.

3.12. Appending header information

In the next step a data header is appended to the bit sequence. The header consists of four,

four bit unsigned integers representing the header values – by square type, version, document

type and reserved bits. Table 7 describes header structure and Table 5 describes header

values.

3.13. Alphanumeric conversion using Base32hex

In order for the Base32hex to properly encode the bit sequence (result of compression in 3.11)

the bit count must be divisible by 5. For this purpose Base32hex adds padding bits at the end

of the sequence so that the resulting sequence is divisible by 5. (When decoding such

sequence, padding bits will be truncated to the closest length divisible by 8.)

The bit sequence will be transformed into ASCII character sequence which complies with the

character set of the QR Code 2005 alphanumeric encoding mode. The transformation is carried

out by the Base32hex which complies to the basic Base32 transformation algorithm [3] with a

specific (hexadecimal) mapping scheme defined in table 9 and specific padding bits treatment

described above. The bit sequence is split into 5 bit chunks which are mapped onto the

characters in table 9.

Table 9 – Encoding table

Character 4 (MSB) 3 2 1 0 (LSB)

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4 0 0 1 0 0

5 0 0 1 0 1

6 0 0 1 1 0

7 0 0 1 1 1

8 0 1 0 0 0

9 0 1 0 0 1

A 0 1 0 1 0

B 0 1 0 1 1

C 0 1 1 0 0

D 0 1 1 0 1

E 0 1 1 1 0

F 0 1 1 1 1

G 1 0 0 0 0

H 1 0 0 0 1

I 1 0 0 1 0

J 1 0 0 1 1

K 1 0 1 0 0

L 1 0 1 0 1

M 1 0 1 1 0

N 1 0 1 1 1

O 1 1 0 0 0

P 1 1 0 0 1

Q 1 1 0 1 0

R 1 1 0 1 1

S 1 1 1 0 0

T 1 1 1 0 1

U 1 1 1 1 0

V 1 1 1 1 1

MSB ­ Most significant bit, LSB ­ Least significant bit

The mapping in table 9 takes advantage of the alphanumeric encoding mode specified by [1].

Note that the resulting character sequence takes roughly 10% more space than the original bit

sequence.

Please note that the resulting Base32hex character sequence can be directly used for NFC,

email attachment, etc.. or can be encoded into QR Code as described in the next section. To

store the Base32hex sequence into a file, use the extension “.bsqr” at the end of the filename

for proper identification of the file content.

3.14. Generating by square Code

The character sequence generated by the Base32hex encoding represents the input for the QR

Code 2005 encoder. by square standard is using QR code 2005 to graphically represent

encoded data in form of a 2D code. QR Code 2005 is a matrix symbology specified by ISO/IEC

[1]. The symbols consist of an array of nominally square light and dark modules arranged in an

overall square pattern. QR code specifications define 40 versions of QR code symbol and

provide rules for evaluating physical size of the QR code symbol, required for reliable and fast

processing by various devices. by square standard was designed so that the individual by

square types never exceed a specific QR code symbol version and so a fixed physical size for

a QR code symbol can be defined. This means that no matter which QR symbol version is

encoding by square data, the symbol is printed in fixed physical size. Fixed physical size greatly

simplifies layouting of invoices and payment orders and guarantees smooth processing of by

square codes by all common devices.

Full overview of maximum symbol versions, physical sizes of QR code symbol and physical

sizes of by square codes is given in table 10.

Table 10 ­ QR code symbol physical size

by square Type

Max sequence

length (characters)

Recommended

Minimum

PAY by square 550 36mm x 36mm 30mm x 30mm

QR code encoding parameters are listed in table 11. To achieve the minimum possible version

of the QR code, it is instrumental to use Alphanumeric mode for encoding by square.

Table 11 – QR code 2005 encoding parameters used by by square

Parameter Value Note

code version xL x is number (from 1 to 17)

mode indicator Alphanumeric 0–9, A–Z (uppercase only), space, $, %, *, +, ­, ., /, :

3.15. Summary – encoding process overview

Figure 3 – by square encoding process overview

3.16. Decoding client data from QR Code 2005 symbol

The decoding process is straightforward and consists of the inverse operations described in the

encoding section.

The QR Code 2005 symbol is decoded according to the standard [1]. The output is a character

sequence which must be further decoded using the Base32hex scheme defined in table 9. Note

that header information is stored in the first four ASCII characters of the sequence which if

necessary can be manipulated independently. The result of the Base32hex decoding is a bit

sequence with the structure on fig. 2 together with the structure of the header. First 4 bits identify

the type of client data which is being decoded, possible values are in table 5. Next 4 bits hold

the version number, which must be equal to (or lower than) the version number of the decoder,

otherwise the decoding process terminates with an unknown document error. Version bits are

followed by 4 document type bits which further specify which subtype of by square Type is being

decoded (see table 5 for a complete list). Note that by square type and document type uniquely

identify the attribute list encoded in the QR Code 2005 symbol. The header ends with 4 bits that

are reserved.

After interpreting the header information and truncating padding bits, the data part is

decompressed by the LZMA algorithm. The output of decompression is the CRC32 checksum

and the sequence of field values. To verify client data integrity a CRC32 checksum is computed

from a sequence of values as described in 3.10. We compare the computed and saved CRC32

(see fig. 2) checksums. In case of a mismatch the decoding process is terminated, otherwise

decoding continues. Field values in the sequence are separated by the ASCII horizontal tab

character. If a field value has not been supplied in the input XML document the field value has

0 length. This results in two consecutive tab characters or a missing last attribute value in the

sequence. All 0 length values are ignored. Order of values in the sequence matches the order

of elements specified in the XSD schema. Through the correspondence of the ordering values

can be mapped to their fields. After establishing the field to value mapping the date fields and

multiple option fields are restored (see section 3.7). All values of date fields are transformed

from YYYYMMDD back to YYYY­MM­DD format and the value in the latter format is considered

as the new value of a given date field.

All field values with multiple options are represented as a sum of classifier integers as described

in the XSD schema. Restoring the original values is achieved by decomposing the sum into the

individual classifier integers. Decomposition of the sum is done by the following algorithm:

Where #options is the number of all possible values of the given attribute and sum is the initial

value of the attribute.

The final step is to create a XML document with the desired fields. The resulting XML document

must comply with the XML schema which is a part of the overall documentation.

4. PAY by square data model

PAY by square data model is specified in the schema document. Few points should be carefully

observed:

Longer bulk payment orders which exceed the capacity of one PAY by square Code are

encoded into multiple PAY by square codes, where each PAY by square code is treated as

individual bulk payment.

Appendix A ­ classifiers.

Appendix A contains lists of all classifiers used within by square standard.

Table 9 – Periodicity classifier

Value Periodicity

d Daily

w Weekly

b Biweekly

m Monthly

B Bimonthly

q Quarterly

s Semiannually

a Annually

Table 10 – Month classifier

Value Month Computation

1 January 2^0

2 February 2^1

4 March 2^2

8 April 2^3

16 May 2^4

32 June 2^5

64 July 2^6

128 August 2^7

256 September 2^8

512 October 2^9

1024 November 2^10

2048 December 2^11

Table 11 – Payment options classifier

Value Payment option Computation

1 paymentorder 2^0

2 standingorder 2^1

4 directdebit 2^2

Table 12 ­ Direct debit type

Value Direct debit type

0 one­off

1 recurrent

Table 13 ­ Direct debit scheme

Value Direct debit scheme

0 other

1 SEPA

Appendix B ­ encoding recommendations.

Appendix B contains recommendations for implementing encoding of the by square codes.

Implementation philosophy

Philosophy behind the by square standard is simplicity. The process of scanning and utilizing

by square codes should require the least possible number of steps. To meet this goal, it is

instrumental that by square codes are carefully and properly encoded.

List of encoding recommendations

1. general recommendations

2. recommendations for encoding PAY by square for invoice

1. General recommendations

1. on using by square software libraries

2. size of the QR code module

3. PAY by square logo

1.1. On using by square software libraries

By square recommends use of by square software libraries for encoding and decoding by

square codes. XML document is the recommended option for providing input data when

encoding by square codes and for obtaining outputs when decoding by square codes. Across

Appendix B we assume use of these software libraries and XML files. As a companion to this

document we are providing sample xml files which illustrate the standard use of by square.

1.2. Size of the QR code module

Recommended and minimum size of QR code with by square logo is defined in by square logo

manual. This size of the QR code guarantees smooth readability of the by square code with all

standard devices including smart phones.

1.3. PAY by square logo

PAY by square QR code needs to be appended with PAY by square logo. Purpose of this is to

provide user with instant recognition of the by square QR codes and to guarantee consistent

and smooth user experience.

2. Recommendations for generating PAY by square for invoice

1. encoding payment options

2. encoding bank accounts

3. encoding payment note

4. other payment order considerations

5. other standing order considerations

6. other direct debit considerations

2.1. Encoding payment options

Three types of payment can be encoded into PAY by square code: (simple) payment order,

standing payment order and direct debit. To clearly define what has been encoded into PAY by

square code PaymentOptions field need to be filled in. Based on the PaymentOptions field,

applications decoding PAY by square code can present user with the options available. Multiple

payment options can be combined together, for example to create a payment order with sanding

order extension, simply fill in “paymentorder standingorder”. The values must be separated by

a space character.

PaymentOptions field values are:

● “paymentorder”

● “standingorder”

● “directdebit”

2.2. Encoding bank accounts

Bank accounts are encoded in the IBAN and BIC format. You can encode several various bank

accounts into PAY by square code to give user various options where he can route the payment.

The default bank account should be encoded as the first in the sequence. Bank applications

decoding PAY by square code will either chose preferred (own) bank account or will use default

(first) option.

The exact number of bank accounts that can be encoded into single PAY by square code is

limited by the code capacity and depends on other payment options. For a simple payment

order there can be encoded up to 6 bank accounts.

2.3. Encoding payment note

We recommend that the PaymentNote field is prefilled for the user by the issuer of the invoice

and payment. This helps user to keep clear track of their payments and expenses, without the

need to type their custom payment note. To provide consistent and structured information in

the PaymentNote field, we recommend payment note structure as defined in table 14.

Table 14 – PaymentNote structure

Issuer

Delimiter

1*

Subject

Delimiter

2**

Client

Delimit

er 3**

Term***

name of the

issuer of the

invoice or

payment

­ subject of

the invoice

or

payment

­ name of

the client

­ term of date

of the service

or product

delivery

recommended

optional

optiona l

optional

*delimiter 1 is colon and space „: “

**delimiter 2 and delimiter 3 is space dash space „ – „

***recommended formats for the term are: YYYY, YYYY/MM, YYYY/MM/DD, YYYY/QQ

Examples of the payment note:

Telefonica: mobile internet – 2012/03

Law Firm: legal services – 2012/1Q

Amslico: life insurance – Mr. Podhajsky – 2012

2.4. Other payment order considerations

When encoding simple payment order please consider following fields:

● PaymentOptions – needs to be filled in with “paymentorder” option

● Amount – encoded with amount payable. This field is not required and can be left

blank in cases payment amount is not known ­ such as donations

● CurrencyCode – 3 letter, payment currency code according to ISO 4217

● PaymentDueDate – optional field

● Payment reference can be encoded in one of the following two ways: 1. by using three

optional fields VariableSymbol, SpecificSymbol and ConstantSymbol 2. by encoding

OriginatorsReferenceInformation which is defined under SEPA.

● PaymentNote – optional field. In previous section we provide further recommendations

for encoding payment note

● BankAccounts ­ In section „encoding BankAccounts“ we provide further

recommendations for encoding bank accounts

● BeneficiaryName - required field.

2.5. Other standing order considerations

Standing order is encoded as an extension to payment order. This means, that only the

additional information required to define standing order is provided. When encoding standing

order please consider following fields:

● PaymentOptions – needs to be filled in with „standingorder“ option

● Day – this is the payment day. It‘s meaning depends on the periodicity, meaning either

day of the month (number between 1 and 31) or day of the week (1=Monday, 2=Tuesday, …,

7=Sunday).

● Month – selection of one or more months on which payment occurs. This is enabled

only if periodicity is set to one of the following value: “Weekly, Biweekly, Monthly, Bimonthly”.

Otherwise it must not be specified.

● Periodicity – periodicity of the payment. All valid options are „Daily“, „Weekly“,

„Biweekly“, „Monthly“, „Bimonthly“, „Quarterly“, „Annually“, „Semiannually“.

● LastDate – defines the day of the last payment of the standing order. After this date,

standing order is cancelled.

2.6. Other direct debit considerations

Direct debit is encoded as an extension to payment order. This means, that only the additional

information required to define direct debit is provided. When encoding direct debit please

consider following fields:

● PaymentOptions – needs to be filled in with „directdebit“ option

● DirectDebitScheme – this field can have “SEPA” value, if direct debit is using SEPA

direct debit scheme or “other” when an ordinary direct debit is defined

● DirectDebitType – can be „one­off“ for one time debit or „recurrent“ for repeated debit

until cancelled.

● Direct debit reference can be encoded in one of the following three ways: 1. by using

two optional fields VariableSymbol and SpecificSymbol. 2. by encoding only

OriginatorsReferenceInformation. 3. by using two required fields MandateID, CreditorID and

one optional field ContractID identifying direct debit under the SEPA direct debit scheme.

● MaxAmount – optional field. As most users prefer to set up some maximum amount

for the direct debit, this can be pre­filled for them

● ValidTillDate – defines the day after which direct debit is cancelled.

Appendix C ­ decoding recommendations.

Appendix C contains recommendations for implementing decoding of the by square

codes.

Implementation philosophy

Philosophy behind by square standard is simplicity. The process of scanning and utilizing the

by square codes should require the least possible number of steps. This philosophy should be

preserved when implementing by square standard into applications. The process of decoding

by square codes should ideally require just two user actions:

● User opts for scanning by square code (ex. PAY by square code)

● User validates the prepared actions (ex. user authorizes payment for execution)

List of decoding recommendations

1. recommendations for mobile banking applications

2. recommendations for decoding PAY by square

1. Recommendation for mobile banking (smart

 banking) applications

List of main functionality to be considered in mobile banking applications:

1. scanning PAY by square code by camera

2. extracting PAY by square from a pdf or picture file

3. generating PAY by square for a peer to peer application

4. generating PAY by square and saving or sending the picture or PDF file by email

On mobile devices, the action of extracting PAY by square code from a PDF or picture file would

be ideally triggered by sending PDF or picture file into the payment app, which would

automatically search for the presence of the by square code. Such implementation would

ensure that users can pay any invoice received as an attachment to an email with only two

actions (send PDF to banking application and authorize payment). Further we refer to both

actions 1 and 2 as scanning PAY by square code.

List of minor functionality:

1. provide user with option to modify and append payment information

2. providing user with choice when multiple payment options are available (ex. choice to

either execute one time payment or to set up standing order)

3. executing bulk payment orders (either one by one or as a true bulk payment order

with one authorization)

4. storing InvoiceID when payment was executed and notifying user next time when he

attempts to process the same payment

5. give the user the option to execute payment at the very moment or postpone payment

execution until PaymentDueDate. For better user experience, this can be made a general setup

option not a payment by payment choice.

6. notify user if payment is past it’s PaymentDueDate and suggest execution of payment

at the very moment

2. Recommendations for decoding PAY by square

2.1. Recommendations for filling in payment order from PAY by square Code

Filling in payment order from a PAY by square Code is trivial. All fields of payment are used,

excluding StandingOrderExt and DirectDebitExt. Three points should be carefully implemented:

1. treatment of PaymentDueDate

2. selection of BankAccount if multiple bank accounts are available. First bank account

on the list is considered to be the default bank account. We recommend that the application

chooses either the bank account at the own bank or the default bank account.

3. treatment of PaymentNote, which might be provided in the PAY by square Code for

user convenience. User should have the option to keep proposed PaymentNote or to modify it

2.2. Recommendations for filling in standing order from PAY by square Code

Standing order is treated as an extension of payment order. To fill in a standing order form from

a PAY by square code requires taking all fields of the payment order and of standing order

extension. These points should be carefully implemented:

1. PaymentDueDate = first payment date of the standing order. If this is not supported

by your standing order system – split the execution into standard payment order for the first

payment and the standing order for the remaining payments. Carefully treat cases when

PaymentDueDate is in the past.

2. selection of BankAccount if multiple bank accounts are available. First bank account

on the list is considered to be the default bank account. We recommend that the application

chooses either the bank account at the own bank or the default bank account.

3. treatment of PaymentNote, which might be provided in the PAY by square Code for

user convenience. User should have option to keep proposed PaymentNote or to modify it

4. periodicity. Implementing periodicity is relatively complex. The most important

parameter is Periodicity. It defines when do consequent payments occur, starting from first

PaymentDueDate. Such as daily, weekly, monthly, quarterly, annually. If Periodicity is set to

Weekly, Biweekly, Monthly or Bimonthly then it is possible to use field Month to choose only

selected months of the year for payment execution. If Periodicity is set to other than daily,

weekly and biweekly, field Day can be filled in to specify on which day of the month the payment

should occur. If Periodicity is set to weekly or biweekly, field Day can be filled in to specify on

which day of the week the payment should occur.

5. LastDate, which specifies the day of the last payment of the standing order. If this is

not supported by your standing order system, the application should notify the user that he

needs to cancel the standing order on that day.

2.3. Recommendations for filling in direct debit order from PAY by square Code

Direct debit is treated as an extension of payment order. To fill in direct debit form from a PAY

by square Code requires taking some fields of the payment order and of direct debit extension.

These points should be carefully implemented:

1. PaymentDueDate = start date of the direct debit validity. If this is not supported by

your system set up the direct debit with validity as of current date

2. Fields MaxAmount and ValidTillDate are optional fields which are pre­filled for

customers convenience when setting up direct debit with limit on maximum amount which can

be debited and with direct debit termination on a scheduled date if such is foreseen.

3. DirectDebitScheme. If DirectDebitScheme value is 1, which is „SEPA“ than encoded

direct debit follows SEPA direct debit scheme which means that fields MandateID, CreditorID

and optional ContractID are used. If direct debit scheme is 0, which is
„OTHER“ this means no specific direct debit scheme and following rules do apply:

a. Creditor is identified via bank accounts

b. Contract between debtor and creditor is identified using one of the following two

ways: 1. by two optional fields SpecificSymbol and VariableSymbol. 2. by one optional field

OriginatorsReferenceInformation. If SpecificSymbol and VariableSymbol fields or

OriginatorsReferenceInformation field is filled in DirectDebitExt then these fields do apply for

the direct debit.

Appendix D ­ data model overview

Table 15 ­ PAY by square sequence data model

Order Field name Type Priority Maximum length

1 InvoiceID string 2 10

2 Payments (count) integer 999

3 PaymentOptions integer 999 1

4 Amount decimal 999 15

5 CurrencyCode string 999 3

6 PaymentDueDate date 999 8

7 VariableSymbol string 7 10

8 ConstantSymbol string 5 4

9 SpecificSymbol string 6 10

10 OriginatorsReferenceInformation string 12 35

11 PaymentNote string 1 140

12 BankAccounts (count) integer 999

13 IBAN string 999 34

14 BIC string 999 11

15 StandingOrderExt integer 999 1

16 Day integer 999 2

17 Month integer 999 4

18 Periodicity string 999 1

19 LastDate date 999 8

20 DirectDebitExt integer 999 1

21 DirectDebitScheme integer 999 1

22 DirectDebitType integer 999 1

23 VariableSymbol string 4 10

24 SpecificSymbol string 3 10

25 OriginatorsReferenceInformation string 11 35

26 MandateID string 10 35

27 CreditorID string 9 35

28 ContractID string 8 35

29 MaxAmount decimal 999 15

30 ValidTillDate date 999 8

31 BeneficiaryName string 999 70

32 BeneficiaryAddressLine1 string 999 70

33 BeneficiaryAddressLine2 string 999 70

Appendix E ­ extended beneficiary fields

Three new SEPA fields were added to by square schema in version 1.1.0. In order to preserve

backwards compatibility, the fields are placed at the end of the data sequence after all payments

data. If these fields were put at the end of every payment, it would break backwards

compatibility for bulk payments in existing readers. As a result data for more than one payment

order would be corrupt.

Table 16 ­ PAY by square extended fields for bulk payment order

Order Field name Value Field name

1 InvoiceID

2 Payments (count) 3

3 PaymentOptions

... Data for first payment

17 PaymentOptions

... Data for second payment

31 PaymentOptions

... Data for third payment

45 BeneficiaryName

Belongs to the first payment

46 BeneficiaryAddressLine1

Belongs to the first payment

47 BeneficiaryAddressLine2

Belongs to the first payment

48 BeneficiaryName

Belongs to the second payment

49 BeneficiaryAddressLine1

Belongs to the second payment

50 BeneficiaryAddressLine2

Belongs to the second payment

51 BeneficiaryName

Belongs to the third payment

52 BeneficiaryAddressLine1

Belongs to the third payment

53 BeneficiaryAddressLine2

Belongs to the third payment

References

[1] International standards ISO/IEC 18004:2006

[2] http://www.w3.org/TR/2008/REC­xml­20081126/

[3] RFC 4648 ­ The Base16, Base32, and Base64 Data Encodings, 2006

[4] http://www.w3.org/XML/Schema

[5] International standards ISO 4217

[6] ISO 3166­1 alpha­3

[7] [BIC] International standards ISO 9362:2009 [IBAN] International standards ISO
13616:2007

[8] [SEPA] http://www.ecb.int/paym/sepa/html/index.en.html

http://www.w3.org/TR/2008/REC
http://www.w3.org/XML/Schema
http://www.ecb.int/paym/sepa/html/index.en.html

